

Innovative solution for sediment beneficial USE Pilot Equipment to accelerate dehydration

IXSANE

Engineering company supporting Circular Economy initiatives

Tristan DEBUIGNE, Delphine HARDY, Sami LALLAHEM, Ilyas ENNAHAL

Objective

Addressing space & timing issues for sediment reuse with innovative continuous dehydration equipment

- Design and construction of a pilot equipment for real life conditions tests
- Onsite tests for demonstration and performances Evaluation
- Roll-out potential & Adding value evaluation to drive sediment reuse to the market

Partners collaboration

Partner	Activities
IXSANE	Design and Construction of the pilot equipment Onsite test Communication documents material (video)
Scottish Canals	End-user operational constraints inputs for the design Support for onsite tests
UoS	Analyse of treated sediment Support for onsite tests
ARMINES - IMT Lille Douai	Analyse of treated sediment
Port of Rotterdam	End-user operational constraints inputs for the design
MTU/BRGM/UCC/ Deltares/ UoS	Advices and general concept validation for the equipment design
TEAM ²	Communication document material (video) dissemination and integration to project web-site
ULille	Promotion to local authorities of SURICATES including the dehydration pilot equipment

Xsane

Design and construction of a pilot equipment

for real life conditions tests

PILOT EQUIPMENT - Requirements

• End-user operational constraints

- Provide material from sediment for
 - bioengineering
 - cement
 - pozzolanic applications
- => Separation of <u>fine fraction (silt and clay enriched in organic matters)</u>, <u>sand</u> and <u>gravel</u> fractions (mineral matters)
- Equipment to be carried onsite by road or boat

Design/process constraints

- Sediment with high water content for granular separation
- Mobile equipment
 - Autonomous process
 - Equipment must be compact in each dimension: Packed in containers

Bowling site regeneration works as a perspective

Module 1

Preparation step

& sand extraction

PILOT EQUIPMENT – How it works?

GRANULAR CLASSIFICATION Gravel & waste extraction >2,5mm material

extraction

GRANULAR CLASSIFICATION Sand extraction > 63μm

FINE FRACTION DEHYDRATION

Module 1

Granular classification of the material into several categories

Module 2

Treatment of the fine part of the material below the threshold predefined in module 1 (Dehydration)

Module 2 Fine fraction dehydration

Module 3

Power supply

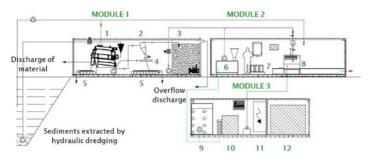
Module 3

Independent operation of the entire machine: energy generation, water storage, spare parts, pipes, toilets,....

PILOT EQUIPMENT – Description

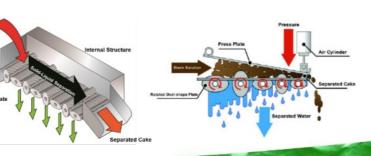
Flocculation

Module 1 Granular classification



Rotary sieve

Hydrocyclone


Module 2 Fine fraction Dehydration

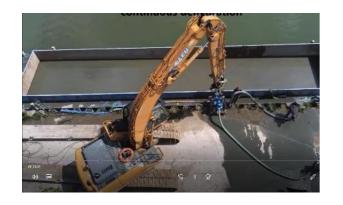
Flocculant preparation zone

Fine fraction dehydration

Module 3 Process autonomy

Water storage

Storage area


Demonstrations & Performances Evaluation

Onsite tests

ON-SITES demonstrations

ENTRANCE 70% of water

ON-SITE TESTS with sediments

Sediments to be dehydrated

ON-SITE TESTS WITH SEDIMENTS FROM QUARRIES

Quarry 1

Quarry 2

Granular classification performances

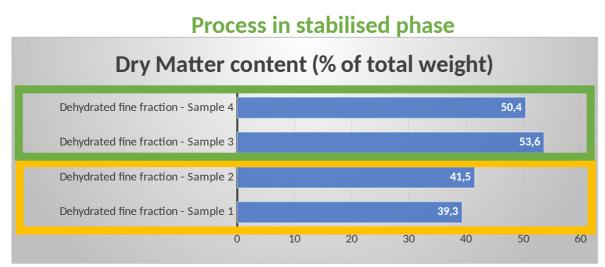
Process capacity to extract sand and larger material from the flow

	Sample ref	Sand 2.00- 0.063mm	Silt 0,063-0,002mm	Clay <0,002mm	Textural Class
Sediment from the lagoon	IFT 1	6%	50%	44%	Silty Clay
Sediment from the lagoon	IFT 2	36%	32%	32%	organic Clay Loam
Extracted sand	IFT 3	93%	7%	0%	sand
fine dehydrated fraction	IFT 4	12%	45%	43%	Organic Silty Clay

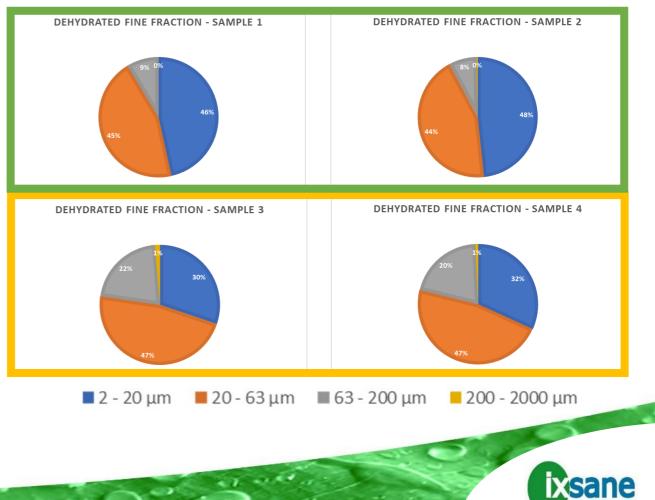
Falkirk sampling campaign results done by UoS

Added value for sediment reuse by allowing optimal allocation of sediment matters for optimal application:

- Gravel & Sand for concrete & cement applications,
- Fine fraction for Bioengineering and pozzolanic properties use.



Fine fraction dehydration performances



Process in adaptation phase

20 minutes to reach 4-6 months lagoon process dehydration levels (50% fine fraction/50% water)

Remaining major challenges for a prototype

Increasing fine fraction flow capacity (limited to 250kg/h)

Developping real time process management techniques to optimize process adaptation capacity with input variations

Improving equipment compacity to decrease transport cost

Xsane

Adding value evaluation & Roll-out potential

to drive sediment reuse to the market

Adding value to drive sediment reuse to the market

- Onsite tests demonstrated the capacity of such process to generate raw materials easy to handle for reuse in for Circular Economy
 - Gravel and material above 2.5mm
 - Sand
 - Fine and dehydrated fraction (50% of dry matters/50% of residual waters)
- 20min to 3 hours vs 3 to 6 months
- Savings on transportation costs
 - Water extraction & granular classification save around 45€/km/day with the current pilot unit
- Savings from landfill costs
 - Sand/gravel reuse from contaminated sediment can save 100€-200€/t

Roll-out applications seen by stakeholders

Improving settling lagoon installation capacity

Improving desalinisation process of marine sediment

Sand industry: sand washing water treatment

Industrial sludge / contaminated sediment dewatering

Interreg

SURICATES

North-West Europe

xsane

xsane

Video on YouTube <u>https://youtu.be/NJ-iuAgOu1Q</u>

Contact :

Tristan DEBUIGNE : tristan.debuigne@ixsane.com

Sami LALLAHEM : sami.lallahem@ixsane.com

www.ixsane.com

Environmental & Urban **Environmental & Urban Environmental & Urban**

